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Abstract  
 

Motivation: Ab initio gene prediction in prokaryotic genomes is supposed to be so accurate that RNA-

Seq data are rarely produced to bring in an additional layer of evidence. In 2016 more than 60,000 

prokaryotic genomes were re-annotated by the NCBI pipeline. Given the sheer volume of prokaryotic 

DNA data flowing from next generation sequencing facilities into genome databases, the annotation 

accuracy should be at the highest level possible. Still, the prevalence of horizontal gene transfer as well 

as ubiquitous leaderless transcription observed in prokaryotic species call for introducing more complex 

models of genes and regulatory regions than it was thought to be sufficient earlier. 

Results: We describe a new algorithm and software tool GeneMarkS-2. The new multi-model tool has an 

option to select parameters best matching local genomic GC content that may vary widely due to 

horizontal gene transfer. Genomes are automatically classified by the inferred types of organization of 

gene starts neighborhoods which evolution is directed by species specific transcription and translation 

mechanisms. A new motif search algorithm, LFinder, introduced to reach higher accuracy in detecting 

conserved motifs in regulatory regions upstream to predicted gene starts uses objective function depending 

on motif localization. In performance assessments made on test sets validated by proteomics experiments 

and other sources of evidence we have demonstrated superior accuracy of GeneMarkS-2 in comparison 

with other state-of-the-art gene prediction tools including GeneMarkS which “plus” version is currently 

used by the NCBI prokaryotic genome annotation pipeline. 

Availability: http://topaz.gatech.edu/GeneMark/genemarks2.cgi 

Contact: borodovsky@gatech.edu 

 

Introduction 
 

The number of microbial species on Earth is estimated to reach beyond 1014 (Locey and Lennon 2016), 

therefore, currently observed exponential growth of prokaryotic genome databases is likely to continue 

for quite a while.  Structural annotation of a new genome relies both on mapping known proteins to 

genome as well as on ab initio gene finding.  Undoubtedly, the search for new microbial species will 

continue to produce genomes with large fractions of genes not showing similarities to previously known 

ones.  

 

Accurate ab initio gene prediction in prokaryotes is hampered by presence of frequent gene overlaps, 

ubiquitous genes with atypical composition, and multiple candidates for gene starts.  Current gene finding 

tools, GeneMarkS, Glimmer and Prodigal are sufficiently precise (Besemer et al. 2001; Delcher et al. 

2007; Hyatt et al. 2010).  The gene prediction accuracy in terms of pinpointing the reading frame, and the 

3’ end is characterized by ~ 3% of errors (the false negative rate estimated on sequences with verified 

genes). On the other hand, estimation of the false positive rate requires verification that a predicted gene 
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is not real.  These evaluations are harder to get.  Finally, the accuracy of translation start site prediction 

are estimated in the range of 80-95% (Hyatt et al. 2010). 

 

We describe GeneMarkS-2, the new gene finder that combines and develops further machine learning 

approaches introduced and implemented in the ab initio gene finders GeneMarkS (Besemer et al. 2001) 

and MetaGeneMark (Zhu et al. 2010). The architecture of generalized HMM of GeneMarkS was expanded 

to account for laterally transferred genes in wide range of GC content (from 30% to 70%).  This expansion 

was made by replacement of a single model for ‘atypical’ genes by a whole host of ‘atypical’ gene models 

validated earlier in MetaGeneMark for bacterial and archaeal genomes (Zhu et al. 2010).  Also, we have 

addressed the issue of species specific variability in organization of the gene start neighborhoods that play 

critical role in control of gene expression.  Iterative unsupervised estimation of model parameters is now 

combined with inference of the type of organization of regulatory regions.  A new objective function for 

motif detection algorithm was introduced. The new algorithm of the Gibbs sampler type, LFinder, was 

shown to make a more precise identification of RBS and promoter motifs.  The accuracy of the new tool 

was assessed on sequences containing genes validated by proteomics as well as by other types of external 

evidence that indicate either gene presence or gene absence.  The results show that the performance of the 

new tool is superior in comparison with other state-of-the-art gene finders.  

 

Methods  
 

Genome modeling 

 

We observed significant differences between prokaryotic species in organization of sequences around 

gene starts; these differences reflect variations in transcription and translation mechanisms.  Majority of 

prokaryotic species rarely use leaderless transcription; thus each gene is preceded by a ribosome binding 

site (RBS).  In another group of species transcription of the first-genes-in-operons or stand-alone genes is 

leaderless; transcripts of these genes do not have space for RBS sites.  There are also species (e.g. 

M. tuberculosis) where only a subset of first-genes-in-operons have leaderless transcription.  In genomes 

of all types we observed RBS sites in front of internal genes of operons. 

 

Genomic sequence can be efficiently described by the generalized hidden Markov models (GHMM). In 

GeneMarkS-2 we expand the model introduced for GeneMarkS (Besemer et al. 2001; Lukashin and 

Borodovsky 1998).  A new design of the model of a gene (Fig.1) allows for two alternative signals situated 

closely to gene start: a ribosome binding site (RBS) and a promoter box (in case of leaderless transcription). 

The species specific models of these two signals include a positional Markov model of fixed length and a 

variable length spacer.  Also, we detected a species specific frequency pattern, the upstream signature, in 

the short sequence proximal to the translation start (sometimes as short as 3nt).  Further on, the gene start 

model includes the species specific model of the start codon.  Finally, there is the downstream signature, 

the species specific model of a sequence (that could be as long as 12nt) located immediately after the start 

codon (Fig. 1).  

 

The three-periodic Markov model of a protein-coding region in GeneMarkS-2 has multiple types, one 

‘typical’ (species specific) and eighty-two ‘atypical’.  Parameters of the ‘typical’ model describing the 

majority of genes with species specific oligonucleotide composition are estimated in iterative self-training. 

The fifth order ‘atypical’ models are pre-designed for forty-one equal intervals of GC content in the range 

from 30% to 70% separately for bacterial and archaeal domains (Zhu et al. 2010).  These ‘atypical’ models 
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are able to describe minority fraction of the genes assumed to be horizontally transferred to the genome 

in question along the path of the species evolution.  The method of generating the GC dependent models 

of protein-coding and non-coding sequences was described earlier (Zhu et al. 2010).  This method was 

demonstrated to deliver effective parameters for gene finding in anonymous metagenomic sequences with 

a wide range of GC content.  

 

Finally, the score of a potential gene depends on the ORF length.  The frequency of a length of protein 

coding sequence obeys a species independent distribution known for prokaryotic genomes; this 

distribution is conventionally approximated by the gamma function (Lukashin and Borodovsky 1998). 

 

Unsupervised training 

 

The principle of the iterative training procedure is to conduct rounds of sequence labeling into coding and 

non-coding regions and to estimate parameters necessary for running the labeling algorithm from the sets 

of sequences with uniform labels assigned in the previous iteration.  The difficult issue of starting this 

cycle is addressed by introducing special ‘heuristic’ parameters that are in fact our sets of pre-designed 

‘atypical’ models of the fifth order.  At the initialization step these models are used in the Viterbi algorithm 

implemented in the log-odds space.  As a result of the run, the sections of genomic sequence are labelled 

as protein-coding and non-coding (intergenic) regions.  

 

The labeling determined in the initialization step starts the main cycle of iterative training (Fig. 2). 

Particularly, the first labeling allows to select a set of genes that appear to be the first-genes-in-operons. 

This category is assigned to a predicted gene “X” if the adjacent upstream gene is either located in the 

complementary strand or ends upstream of “X” at a distance larger than 40nt.  The upstream sequences of 

thus selected genes are used to detect the common conserved regulatory motif.  Predicted instances of this 

motif located in front of the genes are compared with the sequence of conserved 16S RNA tail.  If more 

than 50% of the alignments produce sufficiently good scores then the genome is classified as the one with 

predominant presence of RBS sites (e.g. Escherichia coli), otherwise the search for promoter motif may 

bring in the conclusion that the leaderless mode of transcription is dominant, the leaderless “A” case 

(e.g. Halobacterium salinarum) or that the leaderless mode of transcription is present in a moderate degree 

(e.g. Mycobacterium tuberculosis). 

 

After the initialization step, the training procedure continues as follows.  All the regions labeled as protein-

coding (but those shorter than 300nt) are used in training to estimate parameters of the ‘typical’ model 

(Fig. 2).  The next run of the log-odds Viterbi algorithm (see details in Suppl. Materials) uses the newly 

defined ‘typical’ model in parallel with the whole set of ‘atypical’ ones.  If a given ORF is predicted as 

coding by some ‘atypical’ model (with the score S being above the threshold) and not predicted by a 

‘typical’ model, the ORF is excluded from the training of the ‘typical’ model or a model of intergenic 

region.  All ORFs predicted by the ‘typical’ model are included into the training of the next version of 

‘typical’ model regardless of being predicted by any ‘atypical’ model as well.  Note that the ORF score 

includes the gene start score with upstream and downstream signatures as well as the CDS score; the odds-

ratio normalization is made with respect to the second order model of non-coding sequence which 

parameters are estimated on the set of sequences labeled as non-coding. 

 

The main cycle of iterative training repeats parameter re-estimation and genome labeling until less than 

1% of new labels change in comparison with the labels assigned in the previous iteration (the convergence 
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condition). The step at which convergence is reached is the last training step. All the segments labeled as 

coding regions at this step are accepted as the final gene predictions, the output of the algorithm. 

 

A new motif finder 

 

Accuracy of gene start prediction improves if evolutionary conserved sequences located close to gene 

starts are taken into account.  The MCMC motif finder Gibbs3 (Thompson et al. 2003) was designed to 

learn a probabilistic model of unknown motif present in a set of sequences.  It reaches its goal by iterative 

construction of multiple sequence alignment with respect to predicted motif locations. Gibbs3 was shown 

to work reasonably well for the RBS model delineation in GeneMarkS.  However, its performance  

deteriorates with increase of the genome GC content (e.g. in M. tuberculosis). 

 

Localization of motif with respect to gene start appears to have its own pattern that could be learned.  The 

presence of this pattern is suggested by the mechanism of the action of a ribosome (or RNA polymerase, 

in the leaderless transcription case).  Close proximity of the motif to the gene start facilitates the gene 

expression.  However, the Gibbs3 algorithm does not use information on the motif localization defined by 

the length distribution of the sequence between the motif and the gene start (the spacer).  The new 

algorithm, LFinder, adds localization measure to the objective function of the Gibbs sampling algorithm.  

As a result, LFinder is able to avoid motif locations deviating significantly from the presumed gene start 

(See Suppl. Materials for the details of the LFinder algorithm).  LFinder runs a fixed number of iterations 

N (default N=110).  Multiple executions of the algorithm with different starting points improve the 

performance. The new objective function enables LFinder to outperform Gibbs3 (see Results) 

 

Materials  
 

Sets of genes supported by proteomic data 

 

Mass-spectrometry-determined peptides were mapped to genomes of a number of prokaryotic species by 

the Pacific Northwest National Laboratory (Venter et al. 2011).  In total 1,209,658 peptide spectrums were 

mapped by the MS-GF+ software tool to 87,417 ORFs.  The quality control of the experiments (Venter et 

al. 2011) included i/ requirement that the score of the match to genome would have P-value better than 

1e-10; ii/ removal of low-complexity peptides; iii/ removal of ORFs lacking uniquely mapped peptides, 

iv/ requirement that an ORF would have at least two matching peptides separated by less than 750nt 

distance. The peptide-supported ORFs (psORFs) from 58 species (Table S1) made a test set for assessment 

of accuracy of gene prediction.  

 

Sets of COG annotated genes and simulated non-coding sequences 

 

In addition to tests on peptide supported ORFs, we worked with genomes of 115 bacteria and 30 archaea 

available at NCBI (the species selection was made together with the DOE Joint Genome Institute; for the 

names and RefSeq ID see Table S2).  This set spanning 22 bacterial and archaeal phyla featured genomes 

varied in size, type of genetic code, and GC content.  To minimize effects of possible annotation errors, 

we selected only genes whose functional annotation cited a particular COG name from a database of 

Clusters of Orthologous Groups (Galperin et al. 2015; Tatusov et al. 1997; Tatusov et al. 2003).  

Functional annotation with COG affilation provides a strong evidence of evolutionary conservation not 

expected for a random ORF.  A missed in prediction ‘COG gene’ was counted as false negative (FN). For 
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assessment of frequency of false positive (FP) predictions we used simulated non-coding sequences 

generated by the second-order Markov model.  To train this species-specific model we used genomic 

sequences not annotated as protein-coding genes, RNA genes, or pesudogenes. For each species the model 

generated ten replicas of 1Mb long non-coding sequence to verify that the results do not show unexpected 

deviations.  

 

Test sets of genes with experimentally verified starts  

 

The N-terminal protein sequencing is a standard but not frequently used technique to validate sites of 

translation initiation (protein N-terminals and gene starts).  Relatively large sets of genes with validated 

starts are known for the bacteria E. coli (Rudd 2000; Zhou and Rudd 2013), M. tuberculosis (Lew et al. 

2011), Synechocystis sp. strain PCC6803 (Sazuka et al. 1999) and the archaea H. salinarum, 

Natronomonas pharaonis, and Aeropyrum pernix (Aivaliotis et al. 2007; Yamazaki et al. 2006).  

 

Results of accuracy assessment 

 

Genes supported by proteomics 

 

To assess performance of GeneMarkS, Glimmer3, Prodigal, and GeneMarkS-2 we did run the gene finders 

with default parameters on the 58 genomes (Table S1) with ~87,000 ORFs supported by proteomics 

(psORFs).  The frequencies of the three types of errors were recorded: i/ missed psORFs (false negative); 

ii/ false positives, the predictions incompatible with psORFs (fully overlapped with a psORF located in 

different strand or frame); iii/ errors in start prediction (prediction of genes shorter than they had to be 

given the evidence from a peptide mapped upstream to predicted start). 

 

We observed that GeneMarkS-2 missed the least number of psORFs; this new tool also generated the least 

number of false positives (Table 1). Notably, the required full overlap seems to be a rare event in this test 

setting. Therefore, we complement the test for false positives with the test on simulated sequences (see 

below). Prodigal produced a lower number of “shorter” predictions.  However, one should note that the 

“longer” predictions cannot be detected by proteomics, thus, the start prediction accuracy assessment 

made only with regard to shorter genes is biased.  The tool that has a tendency to predict longer genes 

(even one making a blunt prediction of the longest ORFs) would get a better result in the category of 

“shorter” genes without getting any negative points for predicting too long genes.  The test on genes with 

validated starts (see below) is a more balanced and objective test of performance in gene start prediction. 

 

Finding COG genes as well as “genes” in simulated non-coding sequences 

 

In another round of performance assessment, we focused on COG genes (those longer than 89 nt) 

annotated in 115 bacterial and 30 archaeal genomes (Table S2).  The overall rate of missed COG genes 

for all the gene finders was less than 2% (Table 2A).  The total number of missed genes, 867, was the 

lowest for GeneMarkS-2, followed by Prodigal with 1350.  The GeneMarkS-2 performance was least 

dependent on genome GC content (data not shown).  

 

We also assessed how the performance depends on gene length.  The COG genes were divided into groups 

with length in five intervals starting with minimal length of 90 nt (Table 2A).  Glimmer made lower 

number of “missed” calls for short genes (90nt-150nt range) as compared to the other tools.  Still, this 



6 

effect came at a cost of significant increase in numbers of false predictions in simulated sequences (Table 

2B).  GeneMarkS-2 made the least number of “missed” calls for the COG genes in all the other bins.  At 

the same time it demonstrated quite robust performance in terms of false positives generated in simulated 

sequences.  

 

In the tests with simulated sequences each gene finder was run with its species specific parameters.  The 

error rate was defined as the ratio of the number of predicted “genes” to the total number of random ORFs 

(longer than 90nt).  The test was repeatede ten times for each species.  Notably, the numbers of ORFs in 

a simulated sequence depends on its GC content and is lower for low and high GC composition while 

reaching maximum at about 58-65% GC.  Also, a simulated sequence with high GC (up to 65%) contains 

more long ORFs than sequences with lower GC.  All over, GeneMarkS-2 was observed to have a 

significantly lower error rate, e.g. more than 50% lower than the second best tool, Prodigal (Table 2B).  

The increase of false positive rate of Prodigal in high GC sequences which carry longer ORFs more 

frequently, is likely to be related to the tendency for predicting longer ORFs as genes.  

 

Similarly to analysis done with COG genes, we grouped ORFs predicted in simulated non-coding 

sequences into five groups depending on length (Table 2B).  GeneMarkS-2 demonstrated consistantly 

better performance than Prodigal in all the length intervals.  Glimmer perfomed best in the range 300 – 

600 nt, but did make large number of errors in other length intervals especially in the range below 150 nt. 

Prodigal, in contrast, has shown an increase in false prediction of ORFs longer than 300nt. 

 

The gene start prediction  

 

Assessment of performance was done on the earlier described sets of genes with experimentally verified 

starts available for A. pernix, E. coli, H. salinarum, M. tuberculosis, N. pharaonic and Synechocystis sp. 

(Table 3).  We observed improvement in GeneMarkS-2 gene start prediction in comparison with 

GeneMarkS.  As the result GeneMarkS-2 made correct predictions for the largest number of starts in the 

verified set among all the gene finders.  

 

Here we want to describe a few instructive cases (Fig. 3). The archaeal H. salinarum genome, was 

classified as leaderless class “A” with RBS signal missing in the first-genes-in-operons and promoter for 

leaderless transcription located at a distance 22-24nt from the translation start (Fig. 3B). Still the RBS 

sites for the internal genes in operons are present and located in the distance 6-8 nt (Fig. 3C).  Original 

GeneMarkS identified only the promoter signal with less pronounced localization (Fig. 3A).  The bacterial 

M. tuberculosis genome was classified as leaderless class “B”.  Previously, in GeneMarkS Gibbs3 

attempted but failed to find a correct RBS motif for M. tuberculosis (Fig. 3D).  Application of 

GeneMarkS-2 shows that in M. tuberculosis some first-genes-in-operon are transcribed in leaderless 

fashion, with promoter signals located at 6-8 nt from the gene starts (Fig. 3F), while transcripts of other 

genes have sufficient space for the RBS sites located at 6-8nt distance from the gene starts (Fig. 3E) 

 

Discussion 
 

Improvement in performance demonstrated in several tests justifies introduction of the new features in the 

GeneMarkS-2 algorithm.  The array of ‘atypical’ models improves prediction of horizontally transferred 

genes that appear in a given genome in a rather small number (e.g. less than 15% of genes in E. coli K12 

genome).  Importantly, the difference in GC content between ‘typical’ and ‘atypical’ genes could be as 
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high as 20%.  Most of the time, the GC contents of ‘atypical’ genes were observed to be lower than GC 

content of ‘typical’ ones; the difference is less pronounced in low GC genomes than in high GC genomes 

where the space for downward variation is larger.  Existence of several gene classes in terms of differences 

in codon usage has been known for a while (Borodovsky et al. 1995).  Nevertheless, the two gene finders 

considered here, Glimmer and Prodigal, use single (typical) model for predicting all the genes.  

 

The idea of the multi-model approach could be illustrated as follows.  With some stretch of imagination, 

by disregarding linear connectivity of genes in a given genome, one could think about these ‘disjoint’ 

genes as sequences of a small ‘metagenome’.  A tool we have developed earlier for metagenome analysis, 

MetaGeneMark (Zhu et al. 2010), appears to be a natural source of models for analysis of such a collection 

of sequences showing some variability in GC content.  The sequences of ‘typical’ genes could be clustered 

and processed together to derive more accurate ‘typical’ model.  The remaining small number of genes 

deviated in composition from the bulk of the genome are targets of the best matching ‘atypical’ models. 

A value added feature of this approach is classification of atypical genes into bacterial and archaeal (such 

a separation of models was described in the MetaGeneMark publication).  The insight into possible origin 

of a horizontally transferred gene is particularly useful for genomes of thermophilic bacteria and 

mesophilic archaea.  

 

The concept of ‘heuristic’ modeling as an approach to parameterization of a model suitable for analysis 

of a short sequence segment isolated from genomic context was proposed in 1999 (Besemer and 

Borodovsky 1999); with arrival of many more genomes this method was extended to GC specific high 

order models in MetaGeneMark (Zhu et al. 2010) in 2010.  

 

Necessity of automatic classification of genomes with respect to the types of gene start organization was 

articulated already in the GeneMarkS publication (Besemer et al. 2001). GeneMarkS was used to identify 

genes in Pyrobaculum aerophilum the species with ubiquitous leaderless transcription (Slupska et al. 

2001). Improvement in automatic gene start modeling along with more accurate gene start predictions 

makes possible to generate useful predictions on structure and evolution of elements of transcriptome. 

Notably, there has been a good agreement between sets of the M. tuberculosis genes predicted to be 

leaderless by GeneMarkS-2 and detected to be leaderless in RNA-Seq experiment (Cortes et al. 2013).  

 

Now, after one more time pushing the limits of ab initio gene prediction, we still have to recognize that 

the accuracy did not reach 100%.  There are genes that still escape recognition, e.g. genes significantly 

biased in higher order oligonucleotide composition or genes that are corrupted by frameshifts.  Genes with 

frameshifts present a challenge in terms of a need of annotation of all their fragments even those that are 

not ending at a standard stop codon. There is a gray area of pseudogenes, especially expressed 

pseudogenes, that would distract gene finding tools to generate predictions that have to be appropriately 

classified. When an orthologue of such a gene is present in the database, the frameshift identification can 

be done rather easily. 

 

A version of GeneMarkS known as GeneMarkS+ is used in the latest version of the NCBI pipeline as 

integrator of several types of evidence into genome annotation (Tatusova et al. 2016).  To extend 

GeneMarkS-2 to the “plus” version is the next obvious step.  Running time of GeneMarkS-2 is currently 

~6 minutes on genome of the E. coli size.  Further optimization of the speed is another task on the agenda 

of this group. 
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FIGURES and TABLES 

 

 

 

Figure 1. Principal state diagram of the GHHM of prokaryotic genomic sequence.  States 

modeling a gene in direct strand are shown in 1A. The arrows designate transitions between the 

states. Genes in reverse strand are modeled by identical set of states with directions of arrows 

reversed. The reverse strand states are connected to the direct strand states through the intergenic 

region state and states for genes overlaps in opposite strands (1B and 1C). 

 

 

 

Figure 2. Principal workflow of the unsupervised training. 
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Figure 3.  Visualizations of the motif models (logos) and spacer length distributions for genomes 

of H. salinarum (leaderless class “A”) and M. tuberculosis (leaderless class “B”).  Motifs found 

by GeneMarkS are shown in 3A and 3D respectively.  GeneMarkS-2 first selects first-in-operons 

genes and detects the type of signal (non-RBS in both genomes).  In H. salinarum first-in-operons 

genes have a promoter signal at a large distance, with no RBS due to leaderless transcription 

(3B).  In M. tuberculosis only a fraction of first-in-operons genes have leaderless transcription 

with promoter signal on much closer distance to gene starts (3E).  In both genomes genes located 

inside operons have RBS sites (3C and 3F respectively). 
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Type of error GeneMarkS Glimmer Prodigal GeneMarkS-2

Missed ORF 375 522 230 146

False prediction 250 568 148 102

Short prediction 3,413 3,401 1,338 1,576  

Table 1 Results of gene finding performance assessment on the 58 genomes with annotated 

peptide-supported ORFs (Venter et al, 2011). 

 

 

Table 2. Results of gene finding performance assessment. Panel A: Statistics of observed false negatives 

(missed genes) for the 145 prokaryotic genomes with gene annotation showing COG affiliation. Panel 

B: Statistics of observed false positives for 1Mb non-coding sequences generated by species-specific 

model of non-coding region (145 simulated sequences). 

 

 
Table 3 Numbers of gene starts predicted correctly in the sets of genes verified by N-terminal 

sequencing.  The classes of genomes are defined with respect to the types of signals for the first-

in-operon genes. “Majority RBS” indicates that the RBS in ubiquitously present in upstream 

regions of such genes. “Leaderless & RBS” indicates significant present of leaderless transcription. 

“Minority RBS” in Synechocystis presents the special case when in absence of leaderless 

transcription, the RBS signal is detected in less than 50% of all genes.  

 


